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ABSTRACT Infection with Pasteurella multocida represents a significant economic
threat to Australian pig producers, yet our knowledge of its antimicrobial susceptibil-
ities is lagging, and genomic characterization of P. multocida strains associated with
porcine lower respiratory disease is internationally scarce. This study utilized high-
throughput robotics to phenotypically and genetically characterize an industry-wide
collection of 252 clinical P. multocida isolates that were recovered between 2014 and
2019. Overall, antimicrobial resistance was found to be low, with clinical resistance
below 1% for all tested antimicrobials except those from the tetracycline class. Five
dominant sequence types, representing 64.8% of all isolates, were identified; they
were disseminated across farms and had previously been detected in various animal
hosts and countries. P. multocida in Australian farms remain controllable via current
antimicrobial therapeutic protocols. The identification of highly dominant, interspe-
cies-infecting strains provides insight into the epidemiology of the opportunistic
pathogen, and it highlights a biosecurity threat to the Australian livestock industry.

IMPORTANCE Pasteurellosis is rated by the World Animal Health Organisation (OIE)
as a high-impact disease in livestock. Although it is well understood in many host-
disease contexts, our understanding of the organism in porcine respiratory disease is
limited. Given its high frequency of involvement in porcine respiratory disease com-
plex (PRDQ), it is important that we are aware of its antimicrobial susceptibilities so
that we can respond quickly and appropriately with antimicrobial therapy. Genetic
insights about the organism can help us to better understand its epidemiology and
inform our biosecurity practices and prophylactic management.

KEYWORDS Pasteurella multocida, pigs, Australia, antimicrobial resistance, genomic
comparisons

nfectious respiratory disease is the primary health-related challenge facing the swine
industry worldwide and is estimated to cost producers approximately Aust$2.80 per
untreated pig (1). The disease typically results from several pathogens acting in syn-
ergy, in a syndrome referred to as porcine respiratory disease complex (PRDC) (2).
While PRDC can vary greatly in terms of the infectious agents involved, its pathogene-
sis remains rather formulaic; a primary pathogen initiates disease and impairs respira-
tory defenses, facilitating colonization of the lower respiratory tract by secondary
(opportunistic) pathogens and subsequent exacerbation of the disease state (3). It is
this complication of disease by secondary pathogens that is more frequently associ-
ated with significant economic loss, making these secondary pathogens key targets for
controlling losses due to porcine respiratory diseases.
Studies analyzing the frequency of component pathogens contributing to PRDC
infections have implicated Pasteurella multocida as the most commonly detected
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secondary pathogen (4, 5). P. multocida is a Gram-negative coccobacillus that constitutes
part of the normal flora of the upper respiratory tract, with the capacity to opportunisti-
cally contribute to disease in several livestock species (6). Pneumonia is a common com-
ponent of PRDC, and the participation of P. multocida in PRDC tends to skew disease
from mild pneumonia toward either suppurative bronchopneumonia with occasional
pleuritis or, in some cases, pleuropneumonia preceded by infection with swine influenza
virus (2). The repercussions of pneumonic pasteurellosis are wide-ranging, with a gradi-
ent from reduced weight gain to death, and economic impacts are inevitable (7).

A variety of schemes have been employed for subspecific differentiation of P. multo-
cida. The most enduring approach is serotyping based on capsular polysaccharide and li-
popolysaccharide antigens, for which molecular methods also have been developed (8).
More recently, multilocus sequence typing (MLST) based on allelic profiling has been
employed (9). Capsular serogroup-based typing is the only form of classification thus far to
have identified a clear predilection of certain strains to be causative or associated with spe-
cific diseases. Of particular relevance is the association between capsular serogroup (or ge-
notype) A and PRDC (7). Although it is well understood in many host-disease contexts,
there is limited high-resolution genomic characterization of P. multocida in cases in which
it has been associated with porcine pneumonia (10). Of the 1,741 P. multocida isolates
characterized by MLST that were in the PUbMLST database at the time this study was com-
pleted, <150 pertain to cases of porcine lower respiratory tract disease, with no new sub-
missions since 2016 (11). This paucity of genetic data limits opportunities to understand
strain epidemiology, pathogenicity, and affiliation with antimicrobial resistance genes
(ARGs), information of great value to disease management strategies.

This lack of characterization of PRDC-associated P. multocida strains also extends to
their phenotypic properties. Surveillance of antimicrobial resistance (AMR) among
PRDC-associated P. multocida strains is conducted infrequently, making it difficult to
identify emerging or expanding resistances. The infrequent occurrence of AMR in P.
multocida strains documented in a previous Australian surveillance study (12) is not a
guarantee of ongoing stability, as exemplified by other bacterial species in production
animals for which the occurrence of nonsusceptibility has stealthily increased or new
resistances have arisen by various means, including mutation and horizontal gene
transfer (13). Together, the experiences with PRDC point to a need for a form of surveil-
lance that relies on more isolates being assessed more comprehensively and more of-
ten. A scheme to achieve this involves one or more diagnostic laboratories proactively
accumulating isolates and then submitting them to a central facility for detailed analy-
sis. More advanced capabilities of the receiving laboratory allow genomic and pheno-
typic scrutiny of panels of isolates to be performed rapidly, using standardized assays
under standard conditions and on a large scale. Electronic reporting then makes timely
interventions at the herd level a reality.

This study aimed to clarify the genetic and phenotypic context of Australian porcine
P. multocida strains by using a 5-year (2014 to 2019) collection of isolates that had
been identified as contributors to respiratory tract infections (Table 1) and a robotic
antimicrobial susceptibility platform (RASP) adapted to handle large libraries of iso-
lates. Given the “closed” nature of the Australian national herd, with there being no
live pig imports for over 30 years (14), and conservative use of antimicrobials (15), we
hypothesized that genetically distinct isolates would be found circulating within and
between Australian farms, with these harboring resistance only to antimicrobials of
low importance in human medicine (16).

RESULTS

Phenotypic AMR. Antimicrobial susceptibility data from broth microdilution assays
generally identified <1% of isolates as being resistant to each antimicrobial, with the
exception of chlortetracycline (22.9% resistant) and tetracycline (23.3% resistant)
(Table 2). Low rates of resistance were seen against ampicillin (0.4%), florfenicol (0.4%),
and trimethoprim-sulfamethoxazole (0.8%).
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TABLE 1 Number of Pasteurella multocida isolates used in the study and their respective sites
of isolation (n = 252)

Site(s) of isolation No. of isolates No. of farms
Abdomen 3 3

Brainstem 1 1

Lung 226
Lung and heart

Gut

Heart

Hock

Lymph node and lung
Nasal cavity

Spleen

Tendon sheath
Trachea

Unknown

(o)}
N

DD oo n = =
[TV RN N I

Genotypic AMR. A total of 13 ARGs were detected across the collection of isolates,
associated with the provision of phenotypic resistance to a range of antimicrobial
classes, including aminoglycosides [ant(9)-la, aph(3")-Ib, aph(3)-la, and aph(6)-Id], B-lac-
tams (blageg. ), folate pathway antagonists (dfrA14 and sul2), macrolides [erm(A)], phe-
nicols (floR), and tetracyclines [tet(B) and tet(Y)]. Overall, a low rate of carriage of ARGs
was seen, with no ARGs detected in 75.5% of screened isolates (see Table S2 in the
supplemental material).

Virulence factors. Of the 23 virulence factors screened in this study, 98.9% of iso-
lates were carrying =15 (Table 3). All isolates carried at least one virulence factor from
the iron acquisition, adhesin, protectin, and superoxidase dismutase function groups.
High levels of carriage in isolates were seen for virulence factors from the hyaluronidase
and sialidase function groups, i.e., 75.1% for pmHAS and 65.2% for nanH (not mutually
exclusive with nanB at 18.6%). No observable difference was seen regarding virulence
factor carriage by respiratory tract-derived versus non-respiratory tract-derived isolates.

Strain typing. The whole-genome sequencing (WGS) data were used to identify
capsular and lipopolysaccharide (LPS) genotypes. Capsular genotype A represented
75% of the isolates, followed by 23% of the isolates with capsular genotype D, 1% of
the isolates with capsular genotype F, and 1 untypeable isolate. For LPS genotyping,
isolates belonged to either L1 (8%), L3 (62%), or L6 (30%) genotype. Among the 252
P. multocida isolates, 31 unique sequence types (STs) were represented in various pro-
portions. The most dominant STs included ST 124 (27.8%), ST 9 (15.5%), ST 167 (7.9%),

TABLE 2 Distribution of MICs for 252 Pasteurella multocida isolates collected from Australian pigs between 2014 and 2019¢

0.015 [ 0.03 [ 0.06 | 012 [ 025 | 05 1 2 4 8 16 | 32 | 64 | 128 | %CR
AMP 988 08 04 04
cp | 1000 N/A
crc 260 190 | 320 22.9
FEN 99.6 04
FOX 100.0 N/A
GAM 100.0 | [ 0.0
GEN 44 245 596 115 N/A
NEO 111 206 273 288 24 98 | N/A
SXT 98.4 0.8 08 N/A
TET 520 178 | 67 | 233 233
TIL 200 36 2.8 36 | 0.0
TUL 100.0 0.0
XNL 100.0 | 0.0

9The percentage of isolates is shown for each drug concentration. Isolates were classified as clinically resistant based on CLSI guidelines. Shaded areas indicate the range of
dilutions evaluated for each antimicrobial; green, yellow, and red shading indicates susceptible, intermediate, and resistant concentrations, respectively, and gray shading
is used when no CLSI breakpoints are available. Data outside the shaded areas (white area) represent cases in which the MIC exceeded the tested concentration range.
AMP, ampicillin; CIP, ciprofloxacin; CTC, chlortetracycline; FFN, florfenicol; FOX, cefoxitin; GAM, gamithromycin; GEN, gentamicin; NEO, neomycin; SXT, trimethoprim-
sulfamethoxazole; TET, tetracycline; TIL, tilmicosin; TUL, tulathromycin; XNL, ceftiofur.
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TABLE 3 Virulence factor carriage by 252 Pasteurella multocida isolates obtained from
Australian pigs between 2014 and 2019

Function and gene Detection rate (%)
Iron acquisition
exbB 100.0
exbD 100.0
Fur 99.6
hgbA 96.4
hgbB 93.3
tbpA 0.0
tonB 99.6
Adhesins
fimA 87.0
hsf-1 90.1
hsf2 344
ptfA 100.0
tadD 60.1
pfhA 62.3
Protectins
oma87 100.0
ompA 100.0
ompH 229
plpB 36.0
Sialidase
nanB 18.6
nanH 65.2

Superoxide dismutase
sodA 100
sodC 99.6

Hyaluronidase

pmHAS 75.1
Toxin
toxA 0.0

ST 50 (7.5%), ST 20 (6.7%), and ST 151 (6.7%), while the other 24 STs each represented
less the 5% of the isolates (see Table S3). Of the 252 isolates that underwent sequence
typing, 26 (10%) did not belong to previously registered Rural Industries Research and
Development Corp. (RIRDC) STs and thus were registered in the PubMLST database as
14 new RIRDC STs (STs 379 to 392).

Phylogenetics. Core genome phylogenetic analysis of the 242 viable isolates
revealed clustering based on STs except for a single ST 124 isolate, which grouped with
all ST 9 isolates (Fig. 1). Clustering was seen among STs 167, 50, and 151, while STs 124
and 9 appeared to be genetically distinct. Within each of the major STs (181 of the 252
total isolates), isolates were typically of the same capsular and LPS genotypes; only 2 iso-
lates differed from the dominant capsular genotype of other isolates in their ST, and
only 5 isolates differed from the dominant LPS genotype of other isolates in their ST.

Subsequent phylogenetic analysis of each of the represented LPS genotypes (genotypes
L1, L3, and L6) identified various degrees of intra-LPS-genotype diversity. Among the 155 L3
genotype isolates, three main clades were evident. Clade 2 and clade 3, while clearly diverg-
ing, displayed more moderate similarity to each other than to clade 1, for which the differen-
ces were far more obvious (Fig. 2). The 20 L1 genotype isolates were broadly separated into
three main clades, with clear distinctions between clade 1 and its clade 2 and clade 3 coun-
terparts, for which the difference was less evident (see Fig. S1). The 76 L6 genotype isolates
demonstrated a much lower level of intra-LPS-genotype diversity (see Fig. S2).
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FIG 1 Phylogenetic tree of 242 Pasteurella multocida isolates from Australian pigs with respiratory disease, highlighting the major RIRDC STs along with
their respective capsular and LPS genotypes and farm of origin. Farms contributing >5 isolates had their branch labels colored by farm code. The order of
annotations from the inner ring to the outer ring is as follows: capsular genotype, LPS genotype, and RIRDC MLST ST.

Strain-based trends. All of the major STs were identified on multiple farms across
Australia (Fig. 1). Isolates belonging to ST 124 were identified on 9 farms, ST 9 was detected
on 13 farms, ST 167 was detected on 7 farms, ST 50 was detected on 14 farms, ST 20 was
detected on 8 farms, and ST 151 was detected on 11 farms. These strains were also isolated
over several years; ST 124, ST 9, and ST 50 isolates were identified every year of the studied
time period (2014 to 2019), ST 20 isolates were identified in all studied years except 2014,
ST 167 isolates were identified in all studied years except 2016 and 2019, and ST 151 iso-
lates were identified in all studied years except 2017 and 2019. In regard to the site of isola-
tion, all non-respiratory tract-derived isolates except 1 were found to belong to the same
dominant STs (ST 124, ST 9, ST 50, and ST 151) as respiratory tract-derived isolates.

All of the detected strains were also examined for association with identified AMR
genotypes (Table 4). Isolates in the collection that were carrying ARGs belonged to
nine AMR genotypes, harboring between 1 and 8 genes. Except for ST 167, for which
19 of its 20 isolates shared a single AMR genotype, no other affiliations between STs
and AMR genotypes were apparent. Due to the high frequency of virulence factor car-
riage across all strains, affiliations of specific virulence factors with specific strains were
difficult to identify.

DISCUSSION
Despite the assortment of virulence factors detected with high frequency among
the isolates in this study, our analysis of Australian porcine P. multocida strains high-
lighted several vulnerabilities that can be exploited to reduce the impact on industry.
The low frequency of detection of AMR means that a number of antimicrobials
(especially those of low importance in human medicine) remain viable options for
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FIG 2 Phylogenetic tree of 155 L3 genotype Pasteurella multocida isolates from Australian pigs with

respiratory disease, highlighting intrastrain variations within this LPS genotype.
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TABLE 4 AMR genotype detection rates and associated RIRDC STs for 252 Pasteurella multocida isolates collected from Australian pigs
between 2014 and 2019

AMR genotype“ Detection rate (%) ST (no. of isolates)

8 genes: ant(9)-la, aph(3')-la, aph(6)-Id, blagqg_,, dfrA14, erm(A), sul2, tet(B) 1.2 9(3)

5 genes: aph(3")-1b, aph(3')-la, aph(6)-1d, sul2, tet(Y) 7.5 167 (19)

4 genes: aph(3’')-la, aph(6)-Id, dfrA14, sul2 0.4 50 (1)

4 genes: aph(3")-1b, aph(3’)-la, aph(6)-Id, sul2 0.4 151 (1)

3 genes: aph(3")-1b, sul2, tet(B) 24 151 (6)

2 genes: ant(9)-la, erm(A) 6.3 9(15),388 (1)

1 gene: blagog 4 0.4 20 (1)

1 gene: floR 0.4 7(1)

1 gene: tet(B) 5.6 9(2),50(2),124(1),185(1),384(1),389(3), 13 (4)
0 genes 75.5 7(6),9(19),11(2),12(5),13(8), 18 (2), 20 (16), 24

(3),37(1),50(16), 58 (7), 124 (69), 141 (1), 151
(10), 167 (1), 185 (2), 265 (1), 379 (5), 380 (2),
381 (1),382(5),383 (1), 385 (1), 387 (1),389 (1),
390 (2), 391 (1), 392 (1)

9The number of ARGs identified is indicated for each genotype.

treating P. multocida infections in Australian pigs when necessary. Respiratory infec-
tions are commonly managed using an array of antimicrobials, including B-lactams,
macrolides, phenicols, potentiated sulfonamides, and tetracyclines (17). Resistance
rates of <1% were detected for antimicrobials representing the first four of those five
drug classes, accompanied by an arguably low rate of resistance to tetracyclines (23%).
Neomycin has no clinical breakpoints for P. multocida and thus could be assessed only
based on European Committee on Antimicrobial Susceptibility Testing (EUCAST) epide-
miological cutoff (ECOFF) values, which indicated that 9.2% of isolates were non-wild-
type strains. No resistance to any antimicrobials designated by the World Health
Organisation as highest-priority critically important antimicrobials (ceftiofur, ciprofloxa-
cin, gamithromycin, tilmicosin, or tulathromycin) (18) or as high importance by the
Australian Strategic and Technical Advisory Group on AMR (ASTAG) (ceftiofur or cipro-
floxacin) (16) was detected, and no multidrug resistance was detected.

Although not entirely congruent with the antimicrobial susceptibility data, the high
degree of phenotypic susceptibility to antimicrobials agreed with the low incidence of ARG
carriage (75.5% with no AMR genes). Two of the nine detected AMR genotypes involved
genes conveying resistance to three or more antimicrobial classes; however, the failure to
translate to phenotypic resistance, perhaps due to gene downregulation or lack of expres-
sion, meant that the strains were not classified as multiclass resistant. Additionally, the AMR
genotypes identified in this study showed limited affiliation with a particular ST, with the ma-
jority of dominant strains seen exhibiting several different AMR genotypes, indicating that
factors other than AMR account for their population dominance. An exception was ST 167,
for which 19 of the 20 isolates detected over a 4-year period shared the same AMR geno-
type, harboring five ARGs. The degree of genetic stability displayed by ST 167 indicates an
ability to retain ARGs despite various selective pressures and flags it as particularly deserving
of continued monitoring. The antimicrobial susceptibility data from this study indicate that
several antimicrobials that are commonly relied upon for the treatment of P. multocida infec-
tions in Australian piggeries should remain efficacious.

In comparing the results from various studies, allowance should be made for the pos-
sibility of variations in sampling design and laboratory methods affecting the observed
differences. Nevertheless, there are some similarities and differences concerning this
study and others that are notable. Comparison of the P. multocida AMRs screened for in
both this study and a previous Australian study (12) showed either a decrease in fre-
quency of detection (ampicillin from 4% to 0.4%, florfenicol from 2% to 0.4%, trimetho-
prim-sulfamethoxazole from 2% to 0.8, and tetracycline from 28% to 22.5%) or mainte-
nance of 0% detection across both studies (ceftiofur, tilmicosin, and tulathromycin).
Overall resistance rates were also low in comparison with recent international studies
from Brazil (19), China (20), the Czech Republic (21), Europe (22), South Korea (23), Spain
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(24), Taiwan (25), North America (26), and Vietnam (27). Australia had the lowest (or equal
lowest) rates of resistance for all tested antimicrobials in this study with available compar-
isons except for tetracycline, with a higher rate of resistance (23.3%) than those in Spain
(18.8%) and Europe (20.4%), and florfenicol, with a higher rate of resistance (0.4%) than
those in China (0%) and the United States and Canada (0%) (see Table S4 in the supple-
mental material). The higher rate of tetracycline resistance could be explained by its
ASTAG ranking as a low-importance antimicrobial, along with its broad-spectrum activity,
making it an attractive choice for first-line treatment in Australian pigs (16).

Expanding further on international comparisons, all available P. multocida isolates in
PUbMLST (https://pubmist.org) pertaining to porcine respiratory infections were screened for
commonality with the major STs identified in the present study. Based on this comparison,
ST 167 is unique to Australian pigs. ST 20, while unique to Australia, has historically been iso-
lated from fowl cholera cases, with a high affinity for poultry. ST 124 has only one recorded
incidence of detection outside Australia, from a sheep in New Zealand (1995). ST 50 has
been detected in pigs in Spain (2002 and 2003), China (2003, 2020, and 2021), the Czech
Republic (2001 to 2004), Denmark (2006), India (2007 to 2009 and 2015), and South Korea
(2016). ST 50 was also isolated from a turkey in the United Kingdom (1997) and a rabbit in
Italy (2003, 2004, 2010, and 2015). ST 151 has been detected in Vietnam (1999). ST 9 has
been detected in poultry from Australia (1988, 1992, and 2016 to 2019) and Denmark (2006),
rabbits from Italy (2010, 2011, and 2015) and the Czech Republic (2001), pigs in Spain (2003
and 2004) and China (2021), and a cow in India (1992). The NCBI genome database for
P. multocida (https://www.ncbi.nlm.nih.gov/genome/browse#!/prokaryotes/pasteurella) con-
tains 60 whole-genome-sequenced pig-derived isolates, 47 of which were derived from a
single study on respiratory isolates; only 4 of those were of an ST (ST 9) detected in the pres-
ent study (9). The identification of common STs between Australia and other countries and
host species suggests the occurrence of exchange events enabling the dissemination of
these strains, although it may be difficult to pinpoint in which direction those events
occurred. Although the Australian porcine P. multocida population has demonstrated a
degree of overlap with international strains, the high level of representation of STs detected
only in Australia highlights a distinctly local genetic identity, likely a by-product of Australia’s
unique isolated geography and restrictions on the importation of livestock (28). The other
points to be highlighted here include the apparent lack of host discrimination by infecting P.
multocida strains, particularly between poultry and pigs, as also noted in a previous
Australian study (10), and the biosecurity implications that accompany this finding.

Vaccination to prevent respiratory disease in pigs involving P. multocida is attractive
for convenience of management, animal welfare, and avoidance of antimicrobial use.
Historic vaccination efforts have often centered on the LPS component due to its role
as a major immunogen, often serving as the target of protective antibodies produced
by the host’s immune response (29), although those efforts have seen various degrees
of success (30). A 2013 study seeking to further elucidate differences among P. multo-
cida LPS structures found that the heterogeneity extended beyond the interstrain var-
iations, with intrastrain variations being found among 23 isolates belonging to the L3
LPS genotype (29). The present study examined a larger collection of 155 L3 isolates,
along with 20 L1 and 76 L6 genotype isolates, and observed intrastrain variation within
all three genotypes. It is possible that the intrastrain variation within LPS genotypes
may be a contributing factor to the low efficacy of previous LPS-centric vaccines.
Comparing isolates based on their entire genome, with particular emphasis on isolate
MLST ST, LPS genotype, and capsular genotype, can inform the design of more tar-
geted vaccines with potentially greater efficacy.

Conclusion. Our limited knowledge of P. multocida strains from lower respiratory
tract disease in pigs in Australia has now been increased by a modern surveillance pro-
cess based on high-throughput robotics. The data showed that genetically distinct
Australian P. multocida strains were highly represented, and only low levels of AMR
were found, compared to isolates from other countries. This approach to surveillance
based on large-scale exploitation of standard assays promises to deliver timely advice,
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yielding practical gains in disease management and antimicrobial stewardship. Animal
health programs could more broadly benefit from a wider adoption of this approach
and extension beyond the scope of porcine P. multocida.

MATERIALS AND METHODS

Isolates tested. The study utilized a collection of 252 porcine P. multocida isolates that were
obtained over a 5-year period (2014 to 2019) by ACE Laboratory Services, a major provider of veterinary
diagnostic services to the Australian pig industry. The isolates originated from 66 farms across Australia
and were predominantly derived from the lower respiratory tract of diseased pigs at postmortem exami-
nations (Table 1). Because non-respiratory tract-derived isolates were present in the collection, they
were included in the study for comparison.

Isolates that were confirmed to be P. multocida by matrix-assisted laser desorption ionization-time
of flight (MALDI-TOF) mass spectrometry (Bruker) were subcultured overnight at 37°C on sheep blood
agar (MM1120; Edwards) and then stored in brain heart infusion broth with 20% glycerol (CM1135;
Oxoid) at —80°C prior to downstream testing.

Antimicrobial susceptibility testing. Antimicrobial susceptibility testing of all 252 P. multocida iso-
lates was performed using the RASP methodology (31). The approach involved estimation of MICs by
broth microdilution assay involving 12 antimicrobials, i.e., ampicillin, ceftiofur, chlortetracycline, cipro-
floxacin, florfenicol, gamithromycin, gentamicin, neomycin, tetracycline, tilmicosin, trimethoprim-sulfa-
methoxazole, and tulathromycin. Clinical and Laboratory Standards Institute (CLSI) clinical breakpoints
(32) were used for interpretation of resistance where available, and EUCAST ECOFF values (https://mic
.eucast.org) were used in their absence. The RASP methodology allows this number of MIC assays to be
all completed in a 5-day period (from culture to susceptibility testing, including drug plate preparation),
with data electronically captured for pairing with genomic results and reporting.

Genomic sequencing and analysis. All P. multocida isolates were subjected to WGS using an lllumina
NextSeq sequencer and Celero library preparation kits (Tecan). DNA extraction was performed using the
MagMAX multisample DNA extraction kit (Thermo Fisher Scientific) according to the manufacturer’s
instructions. DNA library preparation was performed using the Celero library preparation kit according to
the manufacturer’s protocol. DNA libraries were sequenced on the lllumina NextSeq platform using a 300-
cycle midoutput v2 reagent kit. Isolate sequences were assembled using SPAdes v3.14.0 (33) before under-
going the following analyses: ABRicate v1.0.1 (34) was used with a custom database containing genes
allowing screening for virulence factors and capsular and LPS genotyping (see Table S1 in the supplemen-
tal material for accession numbers), ARGs were identified using ResFinder (35), MLST determination was
performed using mlst v2.19.0 (36), and isolates with previously unidentified STs (37 across the RIRDC MLST
and multihost MLST P. multocida typing schemes) were registered in the PubMLST database (https://
pubmist.org/organisms/pasteurella-multocida). All isolates were assigned both a multihost ST and a RIRDC
ST but, in the interest of simplicity, only the RIRDC MLST scheme is referred to in this paper.

Phylogenetic trees were generated based on 242 isolate fastq files using single-nucleotide polymor-
phisms (SNPs) identified within the core genome with Snippy v4.1.0 (37), followed by recombination re-
moval with ClonalFrameML v1.11 (38). Maximum likelihood phylogenetic trees were constructed in
RAXML v0.9.0 (39) using the generalized time-reversible model set at 1,000 bootstraps and were visual-
ized in iTOL (40). The primary phylogenetic tree compared all 242 isolates, while subsequent trees com-
pared only isolates of the same LPS genotype.

SUPPLEMENTAL MATERIAL

Supplemental material is available online only.
SUPPLEMENTAL FILE 1, PDF file, 0.3 MB.
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