Production details
This is a large corporate conventional piggery, with breeding and growing pigs on one site in nineteen naturally ventilated sheds. Pigs are sold as both light and heavy finishers at approximately 100 kg and 120 kg live weight.

Feed consumption
Some feed grain is grown on-site with majority of feed purchased off-site and milled off-site. Normal piggery cereal-based feedstuffs are supplemented with waste by-products from other industries with total feed consumed at 21,835 t/yr.

Sales/Transfer
63,255 pigs/yr are sold with a total dressed weight of 4,966 t/yr.

Waste management systems
Manure is automatically flushed from each shed in underfloor drains to a collection sump. From there, effluent is gravity fed directly to the primary anaerobic lagoon which has been covered to collect and flare biogas. The project qualifies under the Carbon Farming Initiative Methodology “Destruction of methane from manure in piggeries”. Effluent from the covered lagoon flows through polishing ponds.

Manure reuse systems
Effluent from the pond system is spray irrigated to land. Crops grown to reuse nutrients include barley, wheat, lupins, maize and lucerne. Approximately 3% of total nutrients are exported from the site in dried pond sludge. Cattle and sheep are also grazed on pastures. Approximately 2,500 ha of land are used for cropping and grazing.
On-Farm Baseline Emissions
Prior to covering the anaerobic lagoon and flaring biogas, the on-farm emissions for the piggery were 23,976 tonnes CO₂-e/yr with an emissions intensity of 4.83 kg CO₂-e/kg HSCW.

The current baseline emissions for this piggery with its covered anaerobic lagoon, biogas capture and flaring total 7,692 tonnes CO₂-e/yr with an emissions intensity of 1.55 kg CO₂-e/kg HSCW.

On-Farm Emissions Reduction Scenario
A viable option on this piggery to further reduce emissions is to install an electricity generation plant with engines running on biogas. Excess electricity generated can be fed into the state power grid. Waste engine heat can also be collected to heat water for recirculation through the farrowing and weaner sheds to replace all LPG heating.

This scenario (see table below) reduced on-farm emissions from 7,692 t/yr to 4,503 t/yr and reduced emissions intensity from 1.55 to 0.91 kg CO₂-e/kg HSCW. (41% reduction).
The National PigGas Extension Project is funded by Ian Kruger Consulting, the Australian Government and Australian Pork Limited.

Ian Kruger Consulting